

Low Impact Development

"LID is an approach to land development (or redevelopment) that works with nature to manage stormwater as close to its source as possible"

Source EPA

Low Impact Development

Annual Hydrology

Pre-Development

Post-Development

Swank, W.T., and Crossley, D.A. 1988. Forest Hydrology and Ecology at Coweeta. New York, NY: Springer-Verlag.

Maximum Impervious

City of Montgomery Smart Code

"New developments will not allow for impervious area to exceed 50%"

Perpetual Taxes

"Building owners will pay a monthly tax based upon their stormwater runoff into the city sewer system"

The Historical Approach to Stormwater

Overview

Pervious Concrete and Permeable Pavers

Benefits

Basic Construction Techniques

Common Questions and Maintenance

Green Building

Pervious Concrete

- A No-FinesConcrete Mix
 - Coarse Aggregate
 - Portland Cement
 - Water
- Intended for use as an open-graded drainage material

History of Pervious Concrete

- Pervious pavements in place throughout the Southeast for over 25 years with successful results.
- Used sparingly in Alabama over last fifteen years,
 mainly in standard applications (sidewalks, parking lots...)
- Recent renewed interest in broad applications with emphasis on environmental benefits (LEED, Green Building Council...)

Pervious Overview

Hutchinson
Baptist Church
Montgomery,
AL

Permeable Paver Shapes

Permeable Paver Shapes

Permeable Paver Cross Section Concrete Pavers Permeable Joint Material Open-graded Bedding Course Open-graded Base Reservoir Open-graded Subbase Reservoir **Underdrain** (As required) System **Optional Geotextile** Components **Under the Subbase Subgrade Soil**

Benefits of Pervious and Permeable Pavers?

- Reduce the need or get rid of costly retention ponds
- Many cities have implemented impact charges for water runoff by allowing only allowing only a certain % of a given property to be covered with impervious materials.
 - Most building sites 50-80% impervious surfaces (pavement, roof...)
 - Maintenance issue to homes and business when mud or sand are continually deposited on carpets or wooden floors.
- Storm water quality is improved
 - Eliminates non point pollution
 - Non point pollution affects 26,000 miles of rivers and streams
 - *EPA notes*: 80-95% reduction in sediment 65-75% reduction in phosphorus 80-85% reduction of nitrogen, zinc, lead

Trees

Construction Specification

ACI 522.1-08

Specification for Pervious Concrete Pavement

Construction

- Paver
- Bedding Course
- Open-graded Base Course
- Open-graded Sub base Reservoir on uncompacted subgrade

Subgrade Preparation

Paver Installation

Paver Installation

Common Questions of Permeable Pavements

Can it be used with other stormwater techniques?

SECTION

© LEE+PAPA AND ASSOCIATES, INC.

Where can pervious be used?

Minimum of .5 inch per hour

Common Questions of Permeable Pavements

Will permeable pavements meet ADA compliance requirements?

Will I have problems with freeze thaw?

What will permeable pavements cost the owner?

Cleaning of Permeable Pavements

Best: Vacuum sweeper (no water)

OK: Regenerative air (broor sweeper (no water)

Vacuum essential as brush bristles clean ~ 1/4 in. into surface

PICP Contributes to LEED Credits

- Decrease pollution through sustainable sites (SS)
- Increase building water use efficiency (WE)
- Conserve materials and resources (MR)
- Innovative ideas and designs (ID)

LEED Points

Credit 6.1 Stormwater design: Quantity control

1

<50% site imperviousness
Reduce to pre-development peak discharge & quantity for a 2 year, 24-hour storm

>50% site imperviousness 25% volume decrease from 2 year, 24-hour storm

Achieve both objectives with PICP

Decrease runoff through Sustainable Sites

LEED Points

Credit 6.2 Stormwater design: Quality control

1

Capture & treat 90% of average annual Rainfall (0.5 to 1 in. depending on region) Remove 80% of total suspended solids

Achieve 80% TSS removal with permeable Interlocking concrete pavements – proven by research

Credit 7.1 Heat Island Effect: Non-roof

50% of site hardscape using
Tree shade in 5 years
Paving with minimum 29 Solar Reflectance Index (SRI)
Grid pavement

OR

Place parking under roof or ground

Water Efficiency

Credit	LEED Points
1.1 Water Efficient Landscaping	
Reduce by 50%	1
1.2 Water Efficient Landscaping	
No Potable Water Use	1
3.1 20% potable water use reduction	1
3.2 30% potable water use reduction	1

Conservation of materials and resources

Credit	LEED Points
3.1 5% reused content (i.e. crushed concrete)	1
3.2 10% reused content	1
4.1 10% recycled waste content (e.g. flyash)	1
4.2 20% recycled waste content	1
5.1 10% extracted & produced regionally (<500 mi.)	1
5.2 20% extracted & produced regionally (<500 mi.)	1
See ICPI Tech Spec 16 on LEED points from pavers	

Municipal Design Strategies: Pilot Programs

www.alconcrete.org