

better together

Incorporating Steel Fibers in Your Concrete Slab

Alabama Concrete Industries Association October 15, 2013 Birmingham, AL October 16, 2013 Huntsville, AL PRESENTATION BY David Parham– SE Regional Sales Manager Bekaert Corporation

- General Steel Fiber Information
- Performance Information
- Steel vs Synthetic Fibers
- Design
- Dosing Mixing and Placing
- Applications
- Better Together

VARIOUS APPLICATIONS

- Other applications:
 - Toppings and overlays
 - Shotcrete,
 - Tunnels linings,
 - Precast
 - Housing, footings
 - Paving
 - Replacement of stirrups/hoop shear reinforcing in beams to 2' x 2' max. 2008 IBC
 - New structural applications being researched

General Information

INFORMATION

Who is Bekaert?

- Founded in **1880**
- **Based In Belgium With Factories** And Offices Throughout The World
- 25,000 employees Worldwide
- Customers in **120** countries
- Combines sales of € 3.3 billion
- Worlds Largest Independent manufacturer of steel wire and wire products

Anchorage

Lifting

Belts

Rubber Tracks

Sawing

Metal Transformation

Tires

Advanced Materials & Coatings

INFORMATION

Is made from hydraulic cement, water, coarse and fine aggregates, admixture and discontinuous discrete steel fibers

BEKAERT

INFORMATION

Why Steel Fibers?

What Are The Benefits of Using Steel Fibers? Technical Considerations

Full Depth Reinforcement Excellent Crack Control No Corrosion Or Spalling Of Concrete Supplying Reinforced Concrete

- Minimum tensile strength (50,000 psi)
- Tolerances
- Physical properties

Direction of drawing

Wire drawing dies with reducing diameter

BEKAERT

- Is there a difference in performance?

Aren't they all the same?

BEKAERT

The Performance Of Steel Fibers Depends On :

BEKAERT

Anchorage

-Hooked ends

-Controlled Pull-Out

- Due to deformation of the crack
- DUCTILITY!

GOLD METAL COUNT:

	Type 1 (Steel)	Type II (Steel)	Macro (Synthetic)
Tensile strength		Jon -	So a
Anchorage		?	?
Aspect Ratio		Jo Contraction	
	3	0	1

BEKAERT

Low L/D (<60) are usually loose.

Loose hook ended fibers

Collated (glued) fibers with L/D > 60

SYNTHETIC OR STEEL

Aren't they all fibers the same?

STEEL AND SYNTHETIC FIBRE REINFORCED CONCRETE Which fiber to use? & for which application and why?

What can we learn from material properties?

	Steel Mesh / Steel Fibers	Micro / Macro Synthetic Fiber
Young's Modulus (E)	30,450 ksi	1,450 ksi
Tensile Strength	72 – 290+ ksi	100 ksi

BEKAERT

Young' s Modulus (E)

 The mathematical description of an object tendency to be deformed elastically (i.e., non-permanently) when a force is applied to it.

Polymer fibers creep

- 2004 to Currrent different concrete labs have tested and evaluated the creep behavior of different fiber materials.

Creep test set-up

Cracks associated with loads and shrinkage

	Specific Gravity
Macro Synthetic fiber	0.91
Water	1.00
Pozzolan	2.35
Fine Aggregates	2.61
Coarse Aggregates	2.73
Cement	3.15
Steel fiber	7.85

BEKAERT

- Beam tests characterize engineering properties of the composite
 - ASTM C 1609 Performance (Replaced ASTM C 1018 Jan 2006)
 - ASTM C 1399 Comparative
 - JSCE SF-4
- Panel tests are used for quality control (primarily shotcrete Tunneling/Ground support projects)
 - EN 14488-5 (Efnarc)
 - ASTM C 1550

Beam Tests – ASTM C1609

Steel Fiber Identity Chart

4000 psi concrete strength

Dramix Steel Fiber Identity Chart 4000 psi concrete strength

Equivalent Moment Capacity

Equates capacity of conventional steel reinforcement to SFRC section

Note: The 3 items needed

- 1. slab thickness,
- 2. concrete psi
- 3. size/spacing of the steel to include the number of layers

BEKAERT

Determine Equivalency

2) Rebar reinforced slab:

Bar Reinforcement =

Strength reduction factor for reinforced section (Φ) =

```
Strength reduction factor for plain section (\Phi) =
```

Moment Capacity Φ Mn =

Moment Capacity Φ Mn+ =

Combined moment capacity, Φ Mn = Φ(Mn+) +Φ(Mn-) =

3) Dramiz Steel Fiber Reinforced Slab

Steel fiber type and dose =	
Section Thickness (t) =	
Concrete Strength (f'c) =	
Section Modulus (s) =	w-t² / 6 =
Modulus of rupture, (fr) = 9^{-1} f c =	
Strength reduction factor for reinfo	proed section (Ф) =
Equivalent flexural ratio, Re3 =	
Moment Capacity	
Moment Capacity © Mn =	

32 pounds per cubic yard of Dramix 3D 65/60BG

- Design based on **actual loading** conditions of the slab
- The Floor Design Sheet Captures the information
- Loading parameters of the slab and is usually **more** cost effective

Yield Line Theory

- Ultimate limit state (ULS) thickness design
 - Check on structural integrity of the slab using yield line model.
 - Safety factors for overload, performance and material resistance
- Serviceability limit state (SLS) check
 - Check on crack widths for durability.
 - Check on deformation for usability
 - External loads and material resistance are unfactored.
- Follows movement toward LRFD and away from ASD in slab-on-ground design (Westergaard Theory 1926)

better together

BEKAERT

Yield Line Theory

- Yield line analysis accounts for the redistribution of moments and formation of plastic hinges in the slab.
 - Plastic hinge regions develop at points of maximum moment and cause a shift in the elastic moment diagram.

ACI 360R-06

Design of Slabs-on-Ground

Reported by ACI Committee 360

APPENDIX 6—DESIGN EXAMPLES FOR STEEL FRC SLABS-ON-GROUND USING YIELD LINE METHOD

The first step is to enter the loads on the slab. The options are:

Uniform Distributed Loads:

Wheel loads from fork trucks:

Wheel loads from trucks:

Point loads:

NEXT

If you click on a button you see this

Or this:

Calcula [®]	tion Progra	am	
Step Load cases Step 2 Paran	Charac St	ep 🔁 Results	
Floor Thickness			
Please enter floor thickness:	In (min 5)		
Safety Factors			
Material Factors	Load Facto	rs	
Concrete γ_{c} 1.5	Variable/Statio	: Loads ^Y q <mark>1.2</mark>	
Steelfibre Concrete Y _{sf} 1.2 D	ynamic Factor (Mobile	Loads) ^Y qd <mark>1.4</mark>	
	http://grd01s37.dcz	.bekaert.com/drapro/dramixasp/	/Po 💶 🗖
Subbase	Description	Indicative K-Valu	-
	Clay	100	
Given value K 150 pci	Loam	150	
Matorial Charactoristics	Sand	250	
Fibre Type RC-65/60-BN			
E desma l Desma ve ele su			
External Parameters			
Shrinkage factor concrete $\mathbf{\hat{k}}^{\dagger} \otimes \mathbf{\hat{n}} \mathbf{\hat{n}}$		- Xc 16 ft	
		's Ib It	
		NEXT 🗲	

Type of load: PointloadNumber of loads: 4Positioning of the loads: In a rectangleLocation on the floor: Center

- OUTPUT

Assumptions /Design Criteria									
K value:			150.000 pci						
Concrete compressive strength, fck :			4000 psi						
For ultimate limit state, the governing load case is : One pointload - Next to the intersection			5230.71 lb-ft/ft						
For serviceability limit state, the governing load case is : One pointload - Saw Cut			5015.60 lb-ft/ft						
Temperature differential between top and Bottom of the slab			9.00 °F						
Coefficient of friction (μ) between slab and subbase :			0.50						
Solution									
Floor thickness :			7.30 in						
Dosage :			32.00 lb/yd³						
Fiber type :			3D 65/60BG						
Re,3 value :			44.51%					·m	SLS
Equivalent flexural strength (Ffct,eq,150) :		:	253.04	psi				6.8	ft.lbs
Max joint spacing :			15.00 ft * 15.00 ft					6.8	ft.lbs
		3.00 in	6.00 in	0.1277	3.098	0.9133	2672.1 ft.lbs	2226.8	ft.lbs
		3.00 in	6.00 in	0.1277	3.098	0.9133	2672.1 ft.lbs	2226.8	ft.lbs
		3.00 in	72.00 in	0.0853	2.651	1.2569	3048.0 ft.lbs	2540.0	ft.lbs

- SFRC shall provide an EFS- equivalent flexural strength **250** psi, minimum when tested in accordance with ASTM C1609, which represents the numerical average of $f_{150,3.0}$ and $f_{150,0.75}$
- XYZ steel fibers

Concentration Rate: 32 pcy to meet required equivalent						
Submittals: Certified test reports showing compliance with specified performance characteristics and physical t properties.						
	Coefficient of friction (µ) between slab and subbase :	0.50				
	Solution Floor thickness : 7.30 in					
	Dosage :	32.00 lb/yd³				
	Fiber type :	3D 65/60BG				
	Re,3 value :	44.51%				
	253.04 psi					
	Max joint spacing :	15.00 ft * 15.00 ft				

DOSING, MIXING & PLACING

MIXING AND PLACING

SFRC

- Adding Fibers
 - To the truck at the job site
 - At the batch plant
- Conventional Methods
 - From the chute
 - Pumping
 - Conveyor
 - Tremie
 - Consolidate with vibration

BEKAERT

• Automatic dosing and dispensing equipment

BEKAERT

BEKAER

Finishing must be timed correctly to avoid disturbing the fresh concrete surface and uncovering fibers

BEKAER

BETTER TOGETHER

How Can Steel Fibers Benefit Project Construction?

- Concrete Floor Projects Are Built Everyday!
- Your company can increase profit margins and enhance quality by designing steel fiber concrete reinforcement to speed placements with shorter construction schedules!

www.clipartof.com · 1173628

- Value Engineering quality floors is the key to having an edge!
- Your firm can be the extra service provider to your customer base!

Some Steel Fiber Applications

Commercial

Industrial

Residential

Wiremesh – Correct Orientation is Rare and Time Consuming

Steel

Fibers can

replace wire

mesh!

BEKAERT

When rebar is placed properly, <u>production is</u> <u>slow.</u>

Steel Fibers can replace rebar!

Have Your Reinforced Concrete Delivered to the Job

Direct discharge of SFRC is no different than plain concrete

- No conventional reinforcment in the way = more efficient laser screed placement
- 2. Reduced labor
- 3. May eliminate pumping.

Scope: 950,000 Square Feet

Conventional Design

12 inches thick, 4500 psi concrete, (2) layers of #4 rebar at 12 inches on center each way, pump required to place

VE Solution

<u>Thinned slab to 8 inches</u> 4000 psi concrete 34 pounds per cubic yard – replaced double mat of rebar! No pump required

Large Cost Savings due to: decreased labor, time savings in tailgating readymix trucks.

High Quality Floor

Industrial Floor Slab in SC

Industrial Floor Slab in SC

BEKAERT

Industrial Floor Slab in SC

BEKAERT

Better Together

Services Provided

 Equivalent moment calculation with steel fibers vs. conventional reinforcement for quick cost evaluation

Load evaluation with steel fiber computer designs

• Quick turnaround of information to value engineer a project

Steel Fiber Cost Comparison – One Example

Equivalent Flexural Strength Requirement = 250 psi

Slab	Area	Volume Concrete	Fiber	Cost	Total Cost
7 inch	100,000 ft2	2160 yd3	Type 5 Fiber Low Performance Dosage = 80 Ibs./yd3	\$0.58/lb. x 80 = \$46.40/yd3	\$100,224
7 inch	100,000 ft2	2160 yd3	Type 1 High Performance Dosage = 32 lbs./ yd3	\$0.88/lb. x 32 = \$28.16/yd3	\$60,825
			Project Savings		\$39,399

BEKAERT
Teamwork

Quality Composite Concrete Floors and Design Service

Advantages- Quality & Cost

- Contractors: Shorter Construction Schedules
 Lower Maintenance Cost- Fewer Call backs;
 joint repair, etc.
- Engineering: Better Design Solutions
- Owners: Higher Quality Floor Slabs

Thick slabs

Double layer of rebar or heavy single layer

Dowels at control joints

Thick slabs

Double layer of rebar or heavy single layer

Thick slabs

Dowels at control joints

Great Floor Slab

better together

BEKAERT

- Double Layer of Rebar Why? Labor intensive, pumping mandatory
 More efficient laser screed usage
- Heavy Single Layer EX. #5 @ 12 inches on center- labor intensive
- Very thick slabs
- Dowels bars at sawn control joints labor intensive, many type 1 steel fibers in conjunction with aggregate interlock provide good load transfer across joints.
- Steel fiber solution vs. conventional reinforcement will reduce labor cost, save time and money for shorter construction schedules.

better together

Thank You!

Questions?

Next Steps?

Why Dramix[®]?

\$\$ Saves Money \$\$

Project example: 100,000 sq ft. slab on grade, 4" thick = 1,235 cubic yards of concrete

Average mesh prices: 10 gauge mesh 17.50 per roll – 160 sq ft Lightly Reinforced Concrete Slab Chart – Dramix 3D 80/60 BG = 10.5 pounds per cubic yard for 10 gauge wire mesh

Contractor Options

1. WWM Pricing W1.4- 10 gauge mesh is \$17.50 per roll /160 = .109 per sf material + .10 labor = .209 inst. per sf

2. Ready Mix Supplier Provides Steel Fiber Reinforced Concrete

Per Lightly Reinforced Concrete Slab Chart at list price.

3D 80/60 BG truck load price = \$.8024 + est .025 freight = \$8.27 per yd.

4" slab \$8.27 @ 25% markup = 10.33 per yd (+ 2.06 per yd RMX profit) / 81 sf = .127 Dramix sf cost to contractor

which saves <u>.082 per sf</u> x <u>100,000 sf = \$ 8,200 savings for contractor vs. using W1.4 Wire Mesh</u>

RMX makes 2.06 per yard x 1234 yds. = 2,542 profit from selling Dramix vs. only selling concrete \$\$

